

SMART CONTRACT CODE REVIEW
AND

SECURITY ANALYSIS REPORT

Date: 21 June, 2025

 NSDQ SMART CONTRACT AUDIT 2

page 2/14

This report may contain confidential information about IT systems and the intellectual prop-
erty of the Customer, as well as information about potential vulnerabilities and methods of
their exploitation.
The report can be disclosed publicly after prior consent by another Party. Any subsequent
publication of this report shall be without mandatory consent.

Document
Name Smart Contract Code Review and Security Analysis Report for NSDQ

Approved By Svyatoslav Nadozirny | Solidity SC Auditor

Auditor
company

Coders Valley Ltd.
63-66 Hatton Garden
Fifth Floor, Suite 23
EC1N 8LE - London
London (GB)
United Kingdom

Type ERC-1400 Security Token

Platform Ethereum Mainnet

Language Solidity ^0.8.30

Methodology Referenced document for audit methodology

ChangeLog June 21, 2025 - initial release

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI

 NSDQ SMART CONTRACT AUDIT 3

page 3/14

Table of contents
Introduction .. 3
Scope .. 3
Severity Definitions ... 3
Executive Summary ... 3

Documentation quality .. 3
Code quality .. 4
Security score .. 4
Summary ... 4

Risks ... 4
System Overview ... 4

Privileged roles .. 4
Recommendations ... 4

Checked Items .. 5
Findings .. 8

Critical ... 8
High ... 8
Medium ... 8
Low .. 8

Disclaimers ... 9
Technical Disclaimer ... 9

 NSDQ SMART CONTRACT AUDIT 4

page 4/14

Introduction
The Customer engaged our company to evaluate the NSDQ smart-contract for security, code quality
and compliance with ERC-1400 best practices. This report summarizes our findings and provides
actionable recommendations.

Scope
The scope of the project includes the following smart contracts from the file:

Contracts: https://drive.google.com/file/d/1Y72QoajCX6_LCZv73pSbV91wwCdscPAk/view

• NSDQ.sol – contains the entire ERC-1400 implementation, supporting partitioned transfers,
EIP-1820 integration, role-based access control, migration logic, and token initialization

Live Code: Not provided

Technical Documentation: Not provided

Tests: Not provided

Environment: Not provided

SHA256 Hash

SHA256 hash of the source code provided:
77f945667433475803c57f65fcdbaba8cee5c801063da93d7d02b15e4c5255bb….. NSDQ.sol

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can lead to the
loss of user funds or contract state manipulation by external or internal actors.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions,
or have a more limited scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal actors.

Medium Medium vulnerabilities are usually limited to state manipulations but cannot
lead to asset loss. Major deviations from best practices are also in this category.

Low
Low vulnerabilities are related to outdated and unused code or minor Gas opti-
mization. These issues won't have a significant impact on code execution but
affect code quality.

Executive Summary

https://drive.google.com/file/d/1Y72QoajCX6_LCZv73pSbV91wwCdscPAk/view

 NSDQ SMART CONTRACT AUDIT 5

page 5/14

The score measurement details can be found in the corresponding section of the scoring methodology.

Documentation quality
The total Documentation Quality Score is 8 out of 10.

• Functional requirements are provided in https://docs.google.com/presentation/d/1KHvku-
ghghFn1563Wooa9So8eQSIo8u6cUmKTt3OQFh0/edit?slide=id.g3619fa5bf2d_0_0#slide=i
d.g3619fa5bf2d_0_0 Token name, symbol, initial and sale supply, unlimited minting, con-
trollability and migration features provided. (Score: 5/5).

• Technical Requirements: Compiler version and ERC-1820 registry address specified; de-
ployment instructions and environment details are absent. (Score: 3/5).

• NatSpec Adherence: NatSpec comments are not used, which reduces readability for audi-
tors and developers.

Code quality
The total Code Quality Score is 6 out of 10.

• Development Environment: No configuration files or scripts (Hardhat/Truffle) provided.
(Score: 2/5).

• Solidity Style Guide Compliance: Code is consistently formatted, follows OpenZeppelin
patterns; missing explicit visibility on internal functions. (Score: 5/5).

Security score
The security Score is 0 out of 10.

Despite correct adherence to ERC-1400 semantics, the presence of a critical reentrancy vector and a
compilation-breaking modifier issue drives the score to the minimum. No unit tests were provided
(0 % branch coverage). (Score: 0/10).

• Critical Issues: 1
- Reentrancy in transfer/transferFrom/transferWithData/transferFromWithData hooks.

• High Issues: 1
- Duplicate nonReentrant modifier in operatorRedeemByPartition, causing compilation fail-
ure.

• Medium Issues: None

• Low Issues: 2.
- Missing explicit internal/private visibility on many helper functions.
- Use of hex-only error codes (e.g. "52") instead of descriptive messages or custom errors.

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI/edit
https://docs.google.com/presentation/d/1KHvkughghFn1563Wooa9So8eQSIo8u6cUmKTt3OQFh0/edit?slide=id.g3619fa5bf2d_0_0#slide=id.g3619fa5bf2d_0_0
https://docs.google.com/presentation/d/1KHvkughghFn1563Wooa9So8eQSIo8u6cUmKTt3OQFh0/edit?slide=id.g3619fa5bf2d_0_0#slide=id.g3619fa5bf2d_0_0
https://docs.google.com/presentation/d/1KHvkughghFn1563Wooa9So8eQSIo8u6cUmKTt3OQFh0/edit?slide=id.g3619fa5bf2d_0_0#slide=id.g3619fa5bf2d_0_0

 NSDQ SMART CONTRACT AUDIT 6

page 6/14

Summary
According to the assessment, the Customer's smart contract has the following score: 2.1.

The system users should acknowledge all the risks summed up in the risks section of the report.

1 2 3 4 5 6 7 8 9 10

 Final score

Breakdown:

• Documentation Quality: 8/10
• Code Quality: 7/10
• Security Level: 0/10
• Test Coverage: Not provided (requires unit tests for scoring).

Note: The final score is weighted according to the methodology (Documentation weighted at 1.0,
Code Quality at 2.0, Security at 7.0), and the absence of unit tests impacts the overall score.

Table. The distribution of issues during the audit

Review date Low Medium High Critical
21 June, 2025 2 0 1 1

Risks
1. Critical re-entrancy vector in transfer, transferFrom, transferWithData, and trans-
ferFromWithData.
An attacker could recursively re-enter the same operation before the initial balance update is final-
ized, effectively “printing” tokens or draining pools. This would allow large-scale theft or perma-
nent locking of user funds, wiping liquidity and crashing the token price, which in turn could trigger
emergency delistings. A likely exploit involves a malicious proxy contract whose tokensReceived()
(or similar) callback repeatedly calls one of the vulnerable transfer functions as long as gas permits,
siphoning value on every recursion.

2. Duplicate nonReentrant modifier in operatorRedeemByPartition, causing a compilation
break.
The contract may fail to compile, or a hurried hot-fix could be pushed that removes the guard alto-
gether. Either outcome opens a window for unauthorized calls or redeployments. Investors face
launch delays, missed exchange listings, or—even worse—a community-created fork without the
protective modifier that later becomes the canonical token and is then drained through the same re-

 NSDQ SMART CONTRACT AUDIT 7

page 7/14

entrancy route described above.

3. Missing explicit internal/private visibility on several helper functions.
Utility methods intended only for internal bookkeeping are callable from the outside, exposing con-
tract internals and letting anyone spam them with arbitrary data. This can leak business logic, inflate
gas costs, and clog critical buy-back or dividend workflows. A bot could hammer such a helper with
oversize payloads, consistently pushing blocks toward the gas limit and slowing or outright stalling
time-sensitive user transactions.

4. Hex-only error codes (“52”, “6a”) instead of descriptive strings or custom errors.
Opaque return codes make it hard for wallets, bridges, and CEX/DEX listing engines to diagnose
failures. Users see unexplained reverts, support tickets rise, and exchanges may temporarily flag the
token as suspicious. In a plausible scenario, a user’s transfer reverts with “0x52”; unable to decode
it, they spread FUD on social media, while an exchange’s monitoring script also detects the un-
known code and pauses deposits until manual review—damaging liquidity and reputation in the in-
terim.

System Overview

NSDQ is an ERC-1400 security token will be deployed on Ethereum Mainnet. Upon construction,
the contract:

• Issues a fixed initial supply of 22,976,190 NSDQ (multiplied by 10¹⁸) to the designated
owner address.

• Transfers 16,083,333 NSDQ (70 % of initial issuance) from the deployer to the seller ad-
dress for sale.

Key characteristics:

• Unlimited Minting: The MinterRole allows authorized minters (and the owner) to issue ad-
ditional tokens until the owner calls renounceIssuance().

• Partitioned Transfers: All tokens reside in a single default partition (NSDQ_DE-
FAULT_PARTITION). Transfers use partition logic for fine-grained control and ERC-20
compatibility via default partition fallback.

• Granularity: Token granularity is set to 1, enforcing that token amounts are always multi-
ples of 1.

• Role-Based Control: Owner and minters manage issuance; controllers and partition con-
trollers enforce transfer restrictions when _isControllable is enabled.

• ERC-1820 Integration: Implements ERC1400, ERC20 interfaces in the ERC-1820 registry
and supports dynamic extensions (validators, checkers, senders, recipients) via registry
hooks.

• Migration Support: The migrate function registers a new contract address in ERC-1820
and can irrevocably disable the current implementation if invoked with definitive=true.

• EIP-712 Domain Aware: Implements a domain separator for off-chain signature verifica-
tion supporting extensions that leverage signed certificates.

All contract logic resides in a single Solidity file (NSDQ.sol), facilitating a complete, on-chain audit
scope.

 NSDQ SMART CONTRACT AUDIT 8

page 8/14

Privileged roles

• Owner: Transfer ownership, renounce control/issuance, set controllers, set extensions, mi-
grate.

• Minters: Addresses in MinterRole can issue new tokens until renounceIssuance().
• Controllers: Global and partition-specific operators when _isControllable is true.

Recommendations
To further enhance the quality and maintainability of the NSDQ contract, the following recommen-
dations are made:

1. Reentrancy Protection
o Add the nonReentrant modifier to all transfer functions. For example:

 - function transfer(address to, uint256 value) external override re
turns (bool) {
+ function transfer(address to, uint256 value) external override no
nReentrant returns (bool) {
 _transferByDefaultPartitions(msg.sender, msg.sender, to, value,
"");
 return true;
 }

o Similarly update transferFrom, transferWithData, and transferFromWithData.

o Alternatively, reorder external hook calls (_callRecipientExtension) to occur af-
ter all state changes, but nonReentrant is simplest.

2. Fix Duplicate Modifier
o In operatorRedeemByPartition, remove the extra nonReentrant:

 - function operatorRedeemByPartition(...) external override nonReen
trant nonReentrant {
+ function operatorRedeemByPartition(...) external override nonReen
trant {
 // ...
 }

3. Explicit Visibility
o Add explicit visibility to all helper functions. Example:

 - function _transferWithData(address from, address to, uint256 valu
e) internal {
+ function _transferWithData(address from, address to, uint256 valu
e) internal {
 // ...
 }

o Ensure no internal or private function lacks a visibility specifier.

4. Descriptive Error Messages or Custom Errors

 NSDQ SMART CONTRACT AUDIT 9

page 9/14

o Replace hex-only require messages with descriptive strings:

 - require(_balances[from] >= value, "52");
+ require(_balances[from] >= value, "NSDQ: insufficient balance");

o Or define and use custom errors for gas savings:

 error InsufficientBalance(uint256 available, uint256 required);

// ...
if (_balances[from] < value) {
 revert InsufficientBalance(_balances[from], value);
}

5. Unit Test Coverage (100% Branch Coverage)
o Use Hardhat + solidity-coverage or Foundry.

o Write tests covering:

§ Successful and failing transfers, minting, and redemption scenarios.
§ Reentrancy attempts (using mock recipient contracts).
§ Access control checks (minter, controller, owner).

o Add coverage script in package.json:

 {
 "scripts": {
 "test": "hardhat test",
 "coverage": "hardhat coverage"
 }
}

6. CI/CD Integration
o Add a GitHub Actions workflow:

 name: CI
on: [push, pull_request]
jobs:
 build:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: actions/setup-node@v2
 with:
 node-version: 16
 - run: npm ci
 - run: npx slither .
 - run: npm test
 - run: npm run coverage

o Optionally include Mythril for additional static analysis.

7. NatSpec Documentation
Add /// @notice, /// @param, /// @return for all public/external functions.

 NSDQ SMART CONTRACT AUDIT 10

page 10/14

Checked Items
The contract was audited for commonly known and specific vulnerabilities. Here is a summary of
the items considered:

Item Type Description Status

Default Visibility
SWC-100
SWC-108

Functions and state variables visibility should be
set explicitly.

Failed

Integer Overflow and
Underflow

SWC-101 Solidity ^0.8.x includes built-in overflow and un-
derflow protection.

Not relevant

Outdated Compiler
Version

SWC-102 Uses recent Solidity version ^0.8.30. Passed

Floating Pragma SWC-103 Contracts should deploy with a fixed compiler
version.

Passed

Unchecked Call
Return Value

SWC-104 Ensures the return value of calls is checked. Passed

Access Control &
Authorization

CWE-284 Properly implemented without unauthorized ac-
cess to protected functions.

Passed

SELFDESTRUCT
Instruction

SWC-106 Contract does not contain self-destruct function-
ality.

Not Relevant

Check-Effect-
Interaction

SWC-107 Follows the pattern to prevent reentrancy at-
tacks..

Failed

Assert Violation SWC-110 Proper code execution prevents reaching a failing
assert statement.

Passed

Deprecated Solidity
Functions

SWC-111 No deprecated functions are used. Passed

Delegatecall to
Untrusted Callee

SWC-112 No delegatecall usage to untrusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128 No risks of DoS attacks through contract design. Passed

Race Conditions SWC-114 No race conditions or transaction order depend-
encies identified.

Passed

Authorization
through tx.origin

SWC-115 tx.origin should not be used for authorization. Passed

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

 NSDQ SMART CONTRACT AUDIT 11

page 11/14

Block values as a
proxy for time

SWC-116 Block numbers are not used as time proxies. Passed

Signature Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Not applicable, as the contract does not use mes-
sage signatures..

Not Relevant

Shadowing State
Variable

SWC-119 State variables are not shadowed. Passed

Weak Sources of
Randomness

SWC-120 Randomness is not generated using block attrib-
utes.

Not Relevant

Incorrect Inheritance
Order

SWC-125 Inheritance order is carefully specified. Passed

Calls Only to Trusted
Addresses

EEA-Level-
2 SWC-126

External calls are only performed to trusted ad-
dresses.

Passed

Presence of unused
variables

SWC-131
The code should not contain unused variables if
this is not justified by design. No unused
variables found, ensuring efficient code.

Passed

EIP standards
violation

EIP The contract adheres to EIP standards, particu-
larly ERC-20.

Passed

Assets integrity Custom
Funds are protected and cannot be withdrawn
without proper permissions or be locked on the
contract.

Passed

User Balances
manipulation

Custom
Contract owners or any other third party should
not be able to access funds belonging to users.

Passed

Data Consistency Custom
Smart contract data should be consistent all over
the data flow.

Passed

Flashloan Attack Custom

When working with exchange rates, they should
be received from a trusted source and not be vul-
nerable to short-term rate changes that can be
achieved by using flash loans. Oracles should be
used.

Not Relevant

Token Supply
manipulation

Custom
Tokens can be minted only according to rules
specified in a whitepaper or any other documen-
tation provided by the customer.

Passed

Gas Limit and Loops Custom Code is optimized to avoid high gas usage and Passed

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

 NSDQ SMART CONTRACT AUDIT 12

page 12/14

unbounded loops.

Style guide violation Custom
Style guides and best practices should be fol-
lowed.

Passed

Requirements
Compliance

Custom
The code should be compliant with the require-
ments provided by the Customer.

Passed

Environment
Consistency

Custom

The project should contain a configured develop-
ment environment with a comprehensive descrip-
tion of how to compile, build and deploy the
code.

Not Relevant

Secure Oracles Usage Custom
The code should have the ability to pause specific
data feeds that it relies on. This should be done to
protect a contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests. Test
coverage should be 100%, with both negative and
positive cases covered. Usage of contracts by
multiple users should be tested.

Failed

Stable Imports Custom
The code should not reference draft contracts,
that may be changed in the future.

Passed

 NSDQ SMART CONTRACT AUDIT 13

page 13/14

Findings
Critical

1) Reentrancy

• Description: Functions transfer, transferFrom, transferWithData, and transferFrom-
WithData call tokensReceived before updating balances, enabling a re-entrant attack.

• Location: ERC1400.transfer, ERC1400.transferFrom, ERC1400._transferByDefaultParti-
tions

• Recommendation: Apply nonReentrant or reorder external hook calls after state changes.

High

1) Duplicate Modifier

• Description: operatorRedeemByPartition declares nonReentrant twice, causing compilation
errors.

• Recommendation: Remove the redundant modifier.

Medium
No issues

Low

1) Implicit Visibility

• Description: Internal helper functions lack explicit internal/private visibility.
• Recommendation: Declare all internal functions with explicit visibility.

2) Error Messaging

• Description: require uses only hex codes (e.g., "52"), hindering diagnosis.
• Recommendation: Use descriptive revert messages or custom errors.

 NSDQ SMART CONTRACT AUDIT 14

page 14/14

Disclaimers
The smart contracts given for audit have been analyzed based on best industry practices at the time
of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security
of the code. The report covers the code submitted and reviewed, so it may not be relevant after any
modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the
code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to
note that you should not rely on this report only — we recommend proceeding with several independ-
ent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of
the translated versions.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The platform, its programming
language, and other software related to the smart contract can have vulnerabilities that can lead to
hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

